Journal of Information Systems Engineering & Management
Research Article
2017, 2(4), Article No: 25

Using the Characteristics of Documents, Users and Tasks to Predict the Situational Relevance of Health Web Documents

Published online: 04 Sep 2017
Download: 594
View: 1185


Relevance is usually estimated by search engines using document content, disregarding the user behind the search and the characteristics of the task. In this work, we look at relevance as framed in a situational context, calling it situational relevance, and analyze whether it is possible to predict it using documents, users and tasks characteristics. Using an existing dataset composed of health web documents, relevance judgments for information needs, user and task characteristics, we build a multivariate prediction model for situational relevance. Our model has an accuracy of 77.17%. Our findings provide insights into features that could improve the estimation of relevance by search engines, helping to conciliate the systemic and situational views of relevance. In a near future we will work on the automatic assessment of document, user and task characteristics.

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Submit My Manuscript

Phone: +31 (0)70 2190600 | E-Mail:

Address: Cultura Building (3rd Floor) Wassenaarseweg 20 2596CH The Hague THE NETHERLANDS


This site is protected by copyright law. This site is destined for the personal or internal use of our clients and business associates, whereby it is not permitted to copy the site in any other way than by downloading it and looking at it on a single computer, and/or by printing a single hard-copy. Without previous written permission from Lectito BV, this site may not be copied, passed on, or made available on a network in any other manner.

Content Alert

Copyright © 2015-2018 Lectito BV All rights reserved.